²³³U (³He, xn) ^{236-x}Pu Excitation Function Study

C.A.Laue, K.E.Gregorich, J.L.Adams, M.R.Lane, D.M.Lee, C.A.McGrath, D.A.Shaughnessy, D.A.Strellis, E.R.Sylwester, D.C.Hoffman

The neutron deficient plutonium region had not been investigated until Andreyev et al. identified the new isotopes, $^{230}\text{Pu}^{1)}$ and $^{228/229}\text{Pu}^{2)}$ using the cinematic separator VASSILISSA. In $^{208}\text{Pb}(^{24/26}\text{Mg},\text{ xn})$ reactions they measured the $\alpha\text{-decay}$ energies of the Puisotopes, but could not determine half-lives or branching ratios for the decay modes. Until then, the lightest plutonium isotope known was $^{232}\text{Pu}.$

In the present study, to understand production and decay properties of these highly neutron-deficient actinides, the light plutonium isotopes were made with highly asymmetric $^{233}\mathrm{U}(^{3}\mathrm{He},\mathrm{xn})$ reaction. Several studies with $^{4}\mathrm{He}$ projectiles and uranium targets were done $^{3},$ while the $(^{3}\mathrm{He},\mathrm{xn})$ reaction remained mostly unexplored. A previous study 4 showed that production cross sections do not occur as expected.

A 3 He beam with projectile energies of 30, 36, 40, 42, 48, 54, 60 and 72 MeV in the laboratory frame and an average intensity of 8 e μ A was used to bombard 8 233 U targets (40 μ g/cm²) arranged in the LIM (Light Ion Multiple)⁵ target system. Interactions of projectiles with the target system caused an energy spread in the target stack ranging from 6 MeV to 1.4 MeV from the lowest to highest projectile energies, respectively.

Recoils were swept out of the target system using a KCl-seeded He-jet and were transported to the remote collection site. The collected samples were chemically purified and were analyzed by α -spectrometry. Frequent repeats of each collection were performed in order to obtain a good statistics. The chemical separation was necessary to remove interfering activities, such as directly produced Np and U isotopes, as well as daughters produced from Pu decay during collection.

Cross section calculations were done under the assumption of 60% He-jet, 40% chemical and 30% detector efficiency*. Results for 233 U(3 He, 4n) 232 Pu reaction cross section are shown in the

figure and appear to be less than $1\,\mu b$. These results were compared to the experimental data taken from ref. 3 and with the predictions of the widely used SPIT code⁷. Due to the observable discrepancies, work with other codes will be done as well as further experimental studies.

Footnotes and References

- * To normalize the data a catcher foil experiment was performed, these data have still to be analyzed.
- 1. A.N.Andreyev et al. Z. Phys. A, 337 (1990) 231.
- 2. A.N.Andreyev et al. Z. Phys. A, 347 (1994) 225-226.
- 3. H.Delagrange et al., Phys Rev C 17/5 (1978) 1706.
- 4. M.B.Hendricks et al., LBLAnnual Report 1996.
- 5. H.L.Hall et al., Nucl.Instrum.Meth., A279(1989) 649.
- 6. C.A.Laue et al., contribution to this report.
- 7. The SPIT code is similar to JORPLE code, but has a more realistic potential for the entrance channel. JORPLE reference is: J.Alfonso, Gmelins Handbuch der Anorg. Chemie, Weinheim, Bd 7b, A1, p.29, 1973.

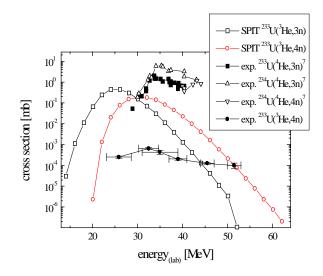


Fig. Comparison of experimentally determined cross sections for ²³³U(³He,4n) ²³²Pu reaction with other similar experimental data from ref. 3 and predicted cross sections from the SPIT codes for the 3n and 4n reaction.